Solving a Polynomial Equation: Some History and Recent Progress

نویسنده

  • Victor Y. Pan
چکیده

The classical problem of solving an nth degree polynomial equation has substantially influenced the development of mathematics throughout the centuries and still has several important applications to the theory and practice of present-day computing. We briefly recall the history of the algorithmic approach to this problem and then review some successful solution algorithms. We end by outlining some algorithms of 1995 that solve this problem at a surprisingly low computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

Solving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial

In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...

متن کامل

Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 39  شماره 

صفحات  -

تاریخ انتشار 1997